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Prediction of the Viscosity for Molecular Fluids from 
the Dilute-Gas Properties via the Inversion Procedure 
for Spherically Symmetric Pair Potentials 1 

V. F. Nebelenchuk 2 and V. A. Mazur 2' 3 

A prediction scheme is presented for the viscosity and translation part of the 
thermal conductivity ("frozen" thermal conductivity) of molecular fluids via the 
application of the original inversion algorithm for spherically symmetric pair " 
potentials. The latter allows us to invert the centrally symmetrical effective inter- 
action potential for two types of dilute-gas properties--the pressure second 
virial coefficient and the low-density gas viscosity. Such a potential is then used 
for the computation of fluid transport properties. Several weakly anisotropic 
molecular systems were considered (N2, O_,, CO_,, CH4). Analysis of the results 
obtained reveals that the class of spherically symmetric potentials may still be 
used for the prediction of fluid transport coefficients from the dilute-gas equi- 
librium and kinetic characteristics. 
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1. I N T R O D U C T I O N  

T h e  p r o b l e m  deal ing  with the t r anspor t  coefficients of  molecu la r  gases has  
a special  concern  for the dense fluid state. A number  of  exper imenta l  da ta ,  
ob ta ined  by  diverse methods ,  are known for molcu la r  fluids. However ,  
essential  d iscrepancies  observed for var ious  sources at high pressures cause 
difficulties in descr ib ing the empir ica l  results by  rel iable analyt ica l  corre la-  
tions. Lack  of  r igorous  kinetic  theory  which would  a l low calcula t ion  of  the 
fluid t r anspo r t  p roper t ies  via the In te rmolecula r  Poten t ia l  ( IP)  makes  this 

s i tua t ion  worse.  
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In the present paper we propose a prediction scheme for the fluid 
viscosity and "frozen" thermal conductivity by using the original inversion 
algorithm [ 1 ]. The latter permits the generation of the sphericalized IP for 
not strongly anisotropic molecules from two types of dilute-gas properties: 
the pressure second virial coefficient (SVC) B ( T )  and the low-density gas 
viscosity qo(T) (Section2). These IP are then applied, with the local 
similarity (LS) method [2],  for calculation of the fluid viscosities and 
"frozen" thermal conductivities (Section3). A rapidly programmable 
analytical representation for the results obtained is given in Section 4. 

2. THE INVERSION ALGORITHM FOR SPHERICALIZED 
POTENTIALS 

A majority of inversion algorithms supposes that some extension 
operation 7(r) should be applied to an initial approximation of the pair 
potential Ut°](r E°l) in such a way as to modify the spatial measure r 2 dr 
or b db (b is an impact parameter) proportionally to the ratio fit( T) / f lo(T)  
or --¢OcLs~/OtLsll--o • The function fl is associated with the SVC as f l= 
B +  T ( d B / d T )  and f2 tl"s~ is the Chapmann-Enskog collision integral. The 
index "e" refers to the macroscopic properties fl or f2 tl'~ as obtained from 
experiment, and "0" to the zeroth approximation on the basis of the IP 
Ut°](rt°]). 

In more detail, we consider the concrete inversion algorithm. The 
method [ 3 ] using the SVC B(T) has been chosen here as the starting point 
for derivation of the sphericalization procedure. We omit a thorough 
statement of known methods, although the main notions important for a 
presentation of our algorithm are presented below. 

(a) The extension function [kl r[k-1] 7, ( ,. ) is introduced by the algo- 
rithm [3] on the kth iteration step as follows: 

7~ k ]( r~ k - l ]  ) = [ flei( Ti)/fl~ k -1]( Ti) ] I/3 ---- r[k]/r~k-I ] (1) 

where fie and fl[k-1~ are the experimental and calculated values of fl based 
on the ( k - 1 ) t h  approximation to IP, U[k-l](r[k-1]). The lower index i 
denotes the numbering of points in the numerical potential. 

(b) The separation r~k- l ] (T i )  is defined by a heuristic relation, 

r} k- ' ] (T,)  = [ fl[ ~-  '](T,)/(2/3~zN)] ,/3 (2) 

being analogous to the random-phase approximation when the transport 
properties are directly inverted [ 3 ]. 
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The analysis of known procedures revealed that a convergence to 
Be(T), which is really of interest, was always observed only in a narrow 
vicinity (e0 _ 6e) around some fixed value of a potential well depth e0. The 
algorithms diverge from Be(T) beyond this interval, although convergence 
always occurs for fie(T). Thus, a "single" spherical function U(r) may be 
obtained from the information on Be(T) via the known approaches. 
However, as a rule, this potential does not yield an adequate description of 
the dilute-gas transport properties even for weakly anisotropic molecular 
systems. 

To overcome this problem we have introduced a modified extension 
function, 

~kl(r~°]) = ?tk]/r~°J (3) 

where ?~k] is that value of distance r for which 

(4) 

The separations r[ °] are defined at the first iteration (k = 1) for the 
zeroth approximation according to Eq. (2). Thus, an inversion procedure 
[3] may be carried out formally for any assumed value of e (though it may 
be divergent) and the sequence of functions 

~tk](rt°]), k = 1, 2 .... (5) 

then should be determined. 
To make the inversion process convergent, we have suggested trans- 

forming the function ~(r) by a scalar parameter a as follows: 

~(r[O]) = ~[/] + ~[~[-,1 _ ~tl]] (6) 

where ~t~](r[°]) and ~7["](r [°3) are the modified extension functions which 
should be previously determined for the lth and mth iteration steps. Such 
transform yields the r-measure r~ 

r, = ~ ( r  t°l) r t°] (7) 

and generates a potential 

U~[ ~(rtO]) rtO]] = Ut°](r t°]) (8) 

This yields a function fl~,(T) which is always very close to the 
experimental fie(T) for any c¢, while the SVC B~(T) strongly depends on ~. 
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One can "turn back" the initially divergent inversion process by taking the 
negative value of 0c. The procedure then becomes convergent. By varying 
the value of 0c it is possible to find the approximation U=(r=; e) which will 
describe an experimental dependence Be(T) for any previously chosen 
magnitude of e. It becomes clear from the above consideration that the 
entire multitude of spherical potentials U(r, e) is obtained for different 
values of e, and all of them will reproduce an experimental curve Be(T). 
However, only that function U(r, e,) may be chosen as the sphericalized 
solution, if it yields an adequate description of transport properties such as 
the dilute-gas viscosity r/o(T). 

These considerations were used for deriving a computational algo- 
rithm. This algorithm was applied to weakly anisotropic systems such as 
N2, O2, CO2, and CH 4. The obtained sphericalized potentials were tested 
first on the dilute-gas data--the SVC B(T) and dilute-gas viscosity r/0 (T). 
The comparison of our calculated values B(T) and ll0(T) with the experi- 
ment [4-9]  has shown that the proposed inversion procedure allows us to 
overcome a problem of inconsistency between the different types of proper- 
ties (equilibrium and transport) even by using the angular-independent 
effective potentials. Figure 1 illustrates such a comparison as an example 
for methane. The procedure is reliable, however, when slightly anisotropic 
molecules are considered. 
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Fig. 1. ( l ) Absolute deviations LIB = B¢.1¢ -- Oexpl, relative to the data  [4] ;  
(tlo - r io  )/~1o compared to the correlation (2) percentage deviations &lo = ~l~ =xp e.~p 
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3. THE BASIC RELATIONS FOR TRANSPORT PROPERTIES 

The main conceptions for computation of transport properties in a 
fluid were presented in Ref. 2, starting from the local similarity hypothesis 
and the approximation of the "diffusing phonon." The fluid properties are 
not computed directly via the real IP function U(r). The potential Ub(r) 
for the reference molecular system is involved in the algorithm too. The 
kinetic cofficients of real system are calculated through the relations of the 
Enskog theory modified for the Van der Waals fluid with the IP of Kac et 
al. [2]. Such a potential consists of a hard-sphere core with a temperature- 
dependent diameter d(T) and an attractive tail. The latter was chosen in 
Lennard-Jones (•:6) form. The soft-sphere viscosity rfl and "frozen" 
thermal conductivity 2 ~ are defined at the temperature T and density p as 

• , P ~ , p  

,i'("1, p) =,7o --~- I 

, W T  " ) , , f l l p  t ,pJ= o-ff  I 

4 , 48 
1+5  YP+4 Y~'+~n Y~'] 

l + ~ Y p +  Y2 25rc 

(9) 

(10) 

where r/~(T) and 2~(T) are the dilute-gas properties for the hard-sphere 
system. The value of Yp is the modified Enskog modulus, which is deter- 
mined from the cubic equation 

/OZ'\ 
YP=Z~+((T' P) T |-g--~~ J o - \ u l / 1  (11) 

According to the "diffusing phonon" approximation, the factor 

F fl]p(1 + 
~( "1, p)  = I 

L 
(12) 

simulates the density dependence for the hard-sphere diameter. The 
numbers fl~,, fl~, and ~'p, ~ 'vs  s are associated with the virial coefficients for the 
soft-sphere gas: 

fl~,( T, p) = 3nNd3(l + 3T(d'r/dr) (13) 

?~(T, p) = 0.625(~nNd3)2( 1 + 6T~d~/d-r) (14) 

where d~ is the temperature derivative of diameter d(T). 
The soft-sphere values of fl~, 9'~, and Ys are calculated from Eqs. 

(11)-(14) with the assumption that ( =  1. The magnitude of ( t ends  to 
unity at zero density and ( ~ 0 as the density increases. The compressibility 
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Z s and thermal pressure term T(OZS/OT)p 
of Carnahan-Starling, 

Z s _ 
(1 _~)3 

(O~_f__Z "~ ' 4 + 4 ~ - 2 ~  2 
T \  Tf / ,=3Td d (1 _ ~ ) 4  

where ~ = ~7~Nd 3 and N is the particle density. 
The real-fluid properties are calculated through the expressions 

are calculated by the equation 

(15) 

(16) 

rl( T, p) = ~1o + ~I~( T)P + ZJtlS( T, p) 

2(T, p) = 2o + 21(T) p +/12S(T, p) 
17) 

where the excess soft-sphere characteristics are 

zlq s = r/s( T, p) - '1~(T) - ,1]( T, p)p 

z12 s = 2s( T, p) - ).~(T) - 2]( T, p)p 
(18) 

The soft-sphere first virial coefficients are 

,z](T, p )=  (o.8,6%- 7~/P~,) ,to 

2](T,  p) = (1.2fl]:, -7~/f l~) 2~o 
(19) 

It is desirable to use empirical correlations for evaluation of real first 
density corrections ~I~(T) and 2 ~(T), because of the lack of rigorous statisti- 
cal methods for these purposes. The approximate computations of virial 
coefficients ~11(T) and 2~(T) were carried out for some substances in 
Refs. 13-15. Those computations were made only for the Lennard-Jones 
(12:6) model of IP and the data are not available for other potentials. 
The real dilute-gas properties r/o(T ) and 2o(T) are calculated directly 
via the real potential U(r). The hard-sphere diameter d(T) was computed 
via the local similarity criteria [2] by applying the obtained inverted IP 
U(r) as the real system potentials. 

4. THE COMPUTATION OF HARD-SPHERE DIAMETER AND 
ANALYTICAL REPRESENTATION OF RESULTS 

The temperature derivative d'r(T) is computed from the differential 
equation 

qflb(T~; l)/flb(T~; 1)=qfl*(T*)--7*(T*)/fl*(T*) (20) 
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where 

fib( T*; 1) = (d .3 + 3d*2T*d~.) Bb( Tu*; l) + d*3(1 - T*e'r*) T* 

T* dC* Yb( Tb*; I) = (d .6 + 6d*ST*d~. *) Cb(T*; l) + d*6(  1 - Tb*e~-*) b dT~ 

fl*(T*) = B*(T*) + T* - -  

(20a) 

(20b) 

dB* dC* 
dT*'  y*(T*) = C* + T* - -  (20c) dT* 

The reduced temperatures are defined here as T*=kBT/e  and 
T* = k B T/eb = T*/e~ (k B is the Boltzmann constant). The values of e and 
eb are the well depths for the real and reference potentials, correspondingly; 
e*=eb/e and d * = d / a  are the reduced well depth and diameter--the 
parameters for the reference Kac's potential; a is the "zero" for the real IP 
[ U(a)= 0]; the number q is equal to 0.8 when the viscosity is calculated; 
and q = 1.2 for the thermal conductivity. The reduced derivatives d~* [to 
be found from Eq. (20)] and e~-* are meant as the derivatives of d*(T*) 
and e*(T*) by T*. The functions B*(T*) and C*(T*) are the reduced 
second and third virial coefficients for the real system and B*(T*; 1) and 
C*(T*; 1) are the corresponding characteristics for the reference IP. 

The value of e~ is determined using the second LS criterion 

I212"21"(T*) = d*2/'2~b2"21* ( T * / e ~ )  (21) 

The derivative e*' is obtained from the relation 

g'2'12'2~*(T *) = 2d*(T*) d*'(T*)  T*Y2Cb2'2"(Tb*; l) 

+ d*2(2~2"2~*(r *,/)(1 -- r*e*' (r*) /e~(T*))  (22) 

for further substitution to Eqs. (20a)-(20c). The magnitude 12~2"2~*(T *) is 
calculated through the transport collision integrals 12 ~t's~°, 

d/2t2,21* 
t'212"2t*(T*) = T* - -  = 4(t'2 ~2"3)* - I2 ~2'2)*) (23) 

dT* 

Equation (22) can be deduced from Eq. (21) by directly differentiating 
the latter. The initial values of e~'0 and do* are found from Eqs. (20) and 
(21) at T*-,~0.9 by assuming that the derivatives e~-* and d~-* are rather 
small in magnitude at low temperatures, i.e., these numbers are simply set 
equal to zero at the initial stage. The value d~-* is calculated at any tem- 
perature T* from Eq. (20). This equation is quadratic relative to d~-* and 
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the smallest modulo negative value d~-* should be chosen. The numerical 
procedure for the solution of differential equations is then used to obtain 
the diameter value at the next temperature T * +  tiT*. 

The parameter / for the Lennard-Jones (/:6) tail of the reference 
potential is obtained from the requirement for the van der Waals constants: 

- T * [  1 - B * ( T * ) ]  dT* ( 2 4 )  
C/ l - 3  = 3  .8 

were 

Ct=pi-l)/i/(i - 1), i=1/6 

This is the third LS criterion allowing for the given real IP to match 
the function Ub(r) having a conformal attracting tail. The data for the 
functions ~°bC~tZ'Z)*t'V~--~S3*,l), g'2~b2"3~*(Tb*, 1), B~(T~',I), and C*(T~',I) are 
presented in Ref. 2 for some numbers/. 

The calculated values of the reduced diameter d* were approximated 
by simple expressions: 

d*(T*)=d*(T*)-O.O2 ~ [~S+2 / ( i+2 ) ]  (25) 
i = l  

where r = x / ( T * - T * ) .  If T*~< To*, then d*=do*. 
The reduced collision integral was represented for this purpose via the 

expression [ 10] 

D~z2},(T,) - Wo T,W~ ~-w2exp(-w3T*)+w4exp(-wsT* ) (26) 

The reduced first density correction 1/* was evaluated according to 
[11] 

6r/* -- 1.504 - 6.49 10 -'-T* -- 0.792/T* + 0.155/T .2 

(27) 
r/i =9.118 10-9o - r/* 

The coefficients for Eqs. (25)-(27) are given in the Appendix. The 
proposed results on the fluid viscosities were tested over a wide density 
range. Comparison with experiment was made up to the upper limits on 
the pressure, which were different for various substances--from 0.1 GPa for 
02 to 1 GPa for CH4. Figure 2 demonstrates such a comparison as an 
example for methane. 
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Fig. 2. Percentage deviations J~/=(~/catc-t/cal¢)/qcxP of the 
calculated viscosities for methane from the data of Ref. 16 
(curve 1 ), Re['. 8 (curve 2), Ref. 17 (curve 3), and Ref. 9 (circles; 
4) at the isotherm 298.15 K. 

5. CONCLUSIONS 

The density dependence for the rotational and vibration internal 
molecular contributions in the case of thermal conductivity is not given by 
this method. However, the results obtained for the viscosities allow hope 
that the proposed prediction scheme will be reliable for weakly anisotropic 
molecular systems. One should add here that the LS approach was also 
tested earlier on the viscosities and thermal conductivities for the noble 
gases up to 1 GPa by using the accurate atom-atom potentials [2]. 

The correlations obtained for the hard-sphere diameters, Eq. (25), 
together with Eqs. (26) and (27) are rather simple and may be widely used 
for generating databases on the transport properties of fluids. 
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Table AI. The Coefficients of Eqs. (25), (26), and (27) 

CH 4 CO 2 02 N2 

do* 1.05 0.975 1.007 1.0175 
To* 1.0375 1.264 1.170 0.980 
elk B ( K ) 221.7424 474.3418 175.2834 141.5 
a (A) 3.510817 3.521208 3.183727 3.47 
m (c.u.) 16.043 44.011 31.9988 28.0134 

61 -2.371047e+00 1.873587e-02 9.550195e-05 1.794800e-04 
62 3.033080e+01 1.129905e+01 2.584558e+00 9.520699e+00 
63 -5.199015e+01 --6.731780e+00 3.986658e+01 2.807697e+01 
64 3.693447e+ 01 --1.206349e+01 --1.365031e+02 --1.171160e+02 
65 --1.218862e+01 1.258755e+01 1.874029e+02 1.516621e+02 
66 1.548757e+00 --3.182510e+00 -1.372774e+02 -9.956796e+01 
67 5.660626e+01 3.605847e+01 
68 -1.242260e+01 -6.881681e+00 
69 1.130813e+00 5.419823e-01 

w I 3.5583321e--01 7.7848565e--01 4.8284179e-01 5.7619157e-01 
w 2 1.0267673e+00 1.5876374e-01 8.4746481e--01 6.2031632e--01 
w 3 9.7171392e-01 3.2419474e-01 9.1993584e-01 7.8294878e--01 
w 4 1.0783942e-02 1.1803972e-03 1.0678673e-02 7.7561288e-03 
w s 6.7097677e--01 8.3913522e--01 6.2991328e-01 8.1449310e--01 
w 6 1.1097162e+00 1.0484874e+00 1.5414915e+00 1.6553697e+00 
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